Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
RSC Med Chem ; 13(6): 647-675, 2022 Jun 22.
Article in English | MEDLINE | ID: covidwho-1735303

ABSTRACT

SARS-CoV-2, the virus responsible for the COVID-19 pandemic, has been confirmed to be a new coronavirus having 79% and 50% similarity with SARS-CoV and MERS-CoV, respectively. For a better understanding of the features of the new virus SARS-CoV-2, we have discussed a possible correlation between some unique features of the genome of SARS-CoV-2 in relation to pathogenesis. We have also reviewed structural druggable viral and host targets for possible clinical application if any, as cases of reinfection and compromised protection have been noticed due to the emergence of new variants with increased infectivity even after vaccination. We have also discussed the types of vaccines that are being developed against SARS-CoV-2. In this review, we have tried to give a brief overview of the fundamental factors of COVID-19 research like basic virology, virus variants and the newly emerging techniques that can be applied to develop advanced treatment strategies for the management of COVID-19 disease.

2.
Appl Microbiol Biotechnol ; 105(20): 7593-7605, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1427235

ABSTRACT

The emergence of SARS-CoV-2 has brought the world to a standstill, and till date, effective treatments and diagnostics against this idiosyncratic pathogen are lacking. As compared to the standard WHO/CDC qPCR detection method, which consumes several hours for detection, CRISPR-based SHERLOCK, DETECTR, and FELUDA have emerged as rapid diagnostic tools for the detection of the RNA genome of SARS-CoV-2 within an hour with 100% accuracy, specificity, and sensitivity. These attributes of CRISPR-based detection technologies have taken themselves one step ahead of available detection systems and are emerging as an inevitable tool for quick detection of the virus. Further, the discovery of Cas13s nucleases and their orthologs has opened a new corridor for exploitation of Cas13s as an antiviral therapy against SARS-CoV-2 and other viral diseases. One such approach is Prophylactic Antiviral CRISPR in huMAN cells (PACMAN), which needs a long haul to bring into therapy. The approval of SHERLOCK as the first CRISPR-based SARS-CoV-2 test kit by the FDA, for emergency diagnosis of COVID-19 patients, has given positive hope to scientists that sooner human trials of CRISPR-based therapy will be ratified. In this review, we have extensively reviewed the present CRISPR-based approaches, challenges, and future prospects in the light of diagnostics and therapeutics against SARS-CoV-2. KEY POINTS: • The discovery of Cas12 and Cas13 siblings allowed scientists to detect the viral genes. • Cas13d's identification aided scientists in precisely cleaving the SARS-CoV-2 ssRNA. • CRISPR-Cas system acts as "molecular detector and antiviral proctor."


Subject(s)
COVID-19 , SARS-CoV-2 , Antiviral Agents , CRISPR-Cas Systems , Humans , RNA, Viral , Real-Time Polymerase Chain Reaction
3.
RSC Adv ; 11(27): 16711-16735, 2021 Apr 30.
Article in English | MEDLINE | ID: covidwho-1238027

ABSTRACT

At the end of 2019, a life threatening viral infection (COVID-19) caused by a novel coronavirus, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) was reported. This virus has spread worldwide in a short duration and forced the world to face unprecedented life and economic loss. To date, there are no known specific drugs to combat this virus and the process for new drug development is lengthy. Most promising candidates, which emerged as potential leads, were abandoned in the later phases of clinical trials. Repurposing of already approved drugs for other therapeutic applications can be done only after extensive testing for safety and efficacy. With no definite therapeutics in the horizon, natural products are in extensive use arbitrarily as anti-viral agents and immune boosters. For ages it has been known that most natural products possess potent anti-viral activity and it is no different for SARS-CoV-2. It has been shown that natural products display inhibitory effects on MERS-CoV and SARS-CoV infections. In silico studies have shown that various natural products have strong binding affinity for and inhibitory action on the non-structural proteins of the virus, namely PLPRO, MPRO, and RdRp, and structural proteins such as spike (S) protein. Since the virus utilizes the transmembrane ACE2 receptor of the host cell, it also proves to be a valid target for drug development. In this review promising targets for drug development against SARS-CoV-2 and anti-viral activities of some of the known natural products are discussed.

4.
In Silico Pharmacol ; 9(1): 27, 2021.
Article in English | MEDLINE | ID: covidwho-1163207

ABSTRACT

Coronavirus spread is an emergency reported globally, and a specific treatment strategy for this significant health issue is not yet identified. COVID-19 is a highly contagious disease and needs to be controlled promptly as millions of deaths have been reported. Due to the absence of proficient restorative alternatives and preliminary clinical restrictions, FDA-approved medications can be a decent alternative to deal with the coronavirus malady (COVID-19). The present study aims to meet the imperative necessity of effective COVID-19 drug treatment with a computational multi-target drug repurposing approach. This study focused on screening the FDA-approved drugs derived from the fungal source and its derivatives against the SARS-CoV-2 targets. All the selected drugs showed good binding affinity towards these targets, and out of them, bromocriptine was found to be the best candidate after the screening on the COVID-19 targets. Further, bromocriptine is analyzed by molecular simulation and MM-PBSA study. These studies suggested that bromocriptine can be the best candidate for TMPRSS2, Main protease, and RdRp protein. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s40203-021-00089-8.

5.
Molecules ; 25(20):4604, 2020.
Article in English | MDPI | ID: covidwho-846157

ABSTRACT

The current pandemic, caused by SARS-CoV-2 virus, is a severe challenge for human health and the world economy. There is an urgent need for development of drugs that can manage this pandemic, as it has already infected 19 million people and led to the death of around 711,277 people worldwide. At this time, in-silico studies are providing lots of preliminary data about potential drugs, which can be a great help in further in-vitro and in-vivo studies. Here, we have selected three polyphenolic compounds, mangiferin, glucogallin, and phlorizin. These compounds are isolated from different natural sources but share structural similarities and have been reported for their antiviral activity. The objective of this study is to analyze and predict the anti-protease activity of these compounds on SARS-CoV-2main protease (Mpro) and TMPRSS2 protein. Both the viral protein and the host protein play an important role in the viral life cycle, such as post-translational modification and viral spike protein priming. This study has been performed by molecular docking of the compounds using PyRx with AutoDock Vina on the two aforementioned targets chosen for this study, i.e., SARS-CoV-2 Mpro and TMPRSS2. The compounds showed good binding affinity and are further analyzed by (Molecular dynamic) MD and Molecular Mechanics Poisson-Boltzmann Surface Area MM-PBSA study. The MD-simulation study has predicted that these natural compounds will have a great impact on the stabilization of the binding cavity of the Mpro of SARS-CoV-2. The predicted pharmacokinetic parameters also show that these compounds are expected to have good solubility and absorption properties. Further predictions for these compounds also showed no involvement in drug-drug interaction and no toxicity.

SELECTION OF CITATIONS
SEARCH DETAIL